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Abstract— As part of the course curriculum, students were
given the opportunity to pick from several choices of control
projects. The listed projects all involved developing a model
for a system, implementing the model in MATLAB, simplifying
the model, and finding a control law to provide some level
of performance. We chose to develop a dynamical model for
the Furuta pendulum and develop control laws to stabilize the
pendulum. We adapted the project to tackle the difficulty of
stabilizing a double inverted pendulum mounted on a cart. This
scenario is a highly unstable system, more so than the original
Furuta pendulum. We sought to linearize the system around its
equilibrium, and then the two segments are kept in an upright
position using a common method that we learned in the course.
We do it through LQR control functions. The system is then
simulated in MATLAB.

I. INTRODUCTION
The original project outline describes the Furuta pendulum

to consist of a ”driven arm which rotates in the horizontal
plane and a pendulum attached to that arm which is free to
rotate in the vertical plane.” The control objective was ”to
move the arm to ’spin-up’ the pendulum and then stabilize it
vertically.” Within the project specification, it states that ”this
project is easier than the others, and so, your team will have
to do something truly novel to get a good grade.” Therefore
our team decided to add another segment and place both
segments on a moving cart.

We find it important to define the new specifications of our
project. A double inverted pendulum system is an extension
of the single inverted pendulum, and we have now mounted
it on a cart. We define the new approach by referencing
the original publications by K. Furuta [6]. As stated in the
project, we recognize the experiment of balancing an inverted
pendulum to be one of the most common control engineering
problems. This system is especially interesting as it can be
used to accurately describe many real life problems. Possibly
the most obvious example of a stabilized inverted pendulum
is a human being. When we stand upright, we are acting
as an inverted pendulum with our feet as the pivot. Without
constant small muscular adjustments, we would fall over. The
human nervous system contains an unconscious feedback
control system, which is the senses of balance and reflex,
that uses input from the eyes, muscles, and joints. Even
orientation input from the vestibular system consisting of
the semicircular canals in our inner ears continuously make
small adjustments to the skeletal muscles to keep us standing
upright. Walking, running, or balancing on one leg puts
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additional demands on this system that mimics an inverted
pendulum.

The double inverted pendulum is a nonlinear system with
a high concentration of nonlinearities. We noticed that the
linear quadratic regulator (LQR) feedback design, which we
understand to be a nonlinear extension of the state-dependent
Riccati equation, was the best approach to this dynamic
problem. We acknowledge the matrices of the state space
system to be dependent on the position of the pendulum and
test the LQR method.

II. PENDULUM METHODOLOGY

A. Modeling

The procedure of deriving the differential equations that
describe the model of a double pendulum was aided from
several references below [1] [2] [3].

We outline our procedure in a simple way. We begin by
dening the three objects of our model. These three objects
are the cart, the lower pendulum and the upper pendulum.
Each object has its mass m-i. Also, for the lengths of each
pendulum, we defined them to be l-1 and l-2 respectively.
Also, we denoted the kinetic energy for each mass as KE-i
and the potential energy for each mass as PE-i. The energy
of the system, therefore, is found by:

KE = KE-1 + KE-2 + KE-3 and
PE = PE-1 + PE-2 + PE-3
Furthermore, our team investigated the Langrangian. We 

defined L to be the difference between kinetic and potential 
energy L = KE-i PE-i . The following figure illustrates our 
approach:
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Fig. 1. Figure of our double inverted pendulum on a cart



However, we can input any other cost functions that we 
would like to define. These cost functions depend on the 
capabilities of a mechanical system used in a real life 
simulation that we found with respect to the Furuta 
Pendulum. The input that is used is of the form u = −Kx, 
where K is the state feedback matrix and is the solution of the 
Riccati equation. We took this approach due to the method 
we learned in class.

We can obtain this matrix from Matlab using the 
command k=lqr(sys,Q,R), where sys is the above state 
space system, to which we have set y = x so that the states are 
equal to the outputs. We consider the response for these 
initial conditions:

J = x^T*Q*x + u^T*R*u

Here, we defined Q and R to be our weight matrices for each 
parameter. We can set the dynamics to be anything in this 
model. An example could be:

Q = diag(5, 50, 50, 20, 700, 700) R = 1

B. Linear Quadratic Regulator (LQR) resolution

Now that we have defined the system, we sought to create
a cost function that depends on the position and the input. We
then minimized it with respect to the parameters we created.
For our work, these equations hold true:

Figure 1: Double Inverted pendulum on a cart

θ0 Cart position
θ′0 Cart velocity
θ1 Angle of the lower pendulum
θ′1 Angular velocity of the lower pendulum
θ2 Angle of the upper pendulum
θ′2 Angular velocity of the upper pendulum

d
dt dφ′

−dL
dθ

= Q

The state vector, therefore, is:

Here, we know Q to be the external forces acting on this 
complex system. Therefore, we define our dynamics as such:

D(θ)θ′′ + C(θ, θ′)θ′ + G(θ) = Hu

D(θ) =

 d1 d2cosθ1
d2cosθ1 d4

d3cosθ2d5cos(θ1 − θ2)

d3cosθ2 
d5cos(θ1 − 
θ2) d6


C(θ, θ′) =0

−d2sin(θ1)θ′10 0
θ10 −d5sin( − θ2)θ′1

−d3sin(θ2)θ′
2

d5sin(θ1 − 
θ2)θ′2 0


 0

G(θ) = −f1sinθ1

f− 2 nθ2


H =1

0
0

si

Furthermrore,

These equations we have defined for this two-segment 
inverted pendulum describe the system’s motion. 
However, these equations are clearly nonlinear. As we were 
tasked in this project, we sought to linearize the control law. 
We linearized around the equilibrium:

(θ0, θ1, θ2, θ′ , θ′ , θ′ ) = (0, ..., 0)

This linearizations follows to the state space system:

x′(t) = Ax(t) + Bu(t) 
y(t) = x(t)

x =

(
θ
θ′

)
=


θ0
θ1
θ2
θ′0



We know the Langrangian equations of motion to be:

We created an example to demonstrate our control law. If 
we plug in the following data for the martices above: m0 = 
1.5kg, m1 = 0.5kg, m2 = 0.75g, L1 = 0.5m, L2 = 0.75m 
Then, we end up with

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −7.4920 0.7985 0 0 0
0 74.9266 −33.7147 0 0 0
0 −59.9373 52.1208 0 0 0



B =


0
0
0

−0.6070
1.4984
−0.2839




θ0
θ1
θ2
θ′0
θ′1
θ′2

 =


0
10
−10

0
0
0





We defined these initial conditions for any almost 
negligible changes from the equilibrium. Within Matlab, we 
only use radians even though we define the angles of 
deflection to be in degrees here. The states that we 
modeled are in the appendix below. 

We also tested for different initial conditions to prove how 
holistic our control law is. Here, we tested for larger 
deflections toward the same direction. Our control law 
proved robust as we can see that the system can be balanced, 
although the cart is stabilized far from the point 0, to which it 
returns to with a very low pace. The graphs are also in the 
appendix below. These initial conditions are as follows:


θ0
θ1
θ2
θ′0
θ′1
θ′2

 =


0
20
20
0
0
0


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