
IEEE Standard Floating Point Processor on Spartan 3E FPGA

Erich Meissner1 and Josiah Boyle2

Abstract— Throughout this project, we recognized that float-
ing point operations are difficult to implement on Field Pro-
grammable Gate Arrays (FPGA) because of the complexity of
algorithms. In our research, we learned that many scientific
applications require floating point arithmetic because of the
high accuracy required in their calculations. In this project,
we explored and FPGA implementation in the Institute of
Electrical and Electronics Engineers (IEEE) -754 floating-point
numbers standard. Again, floating point arithmetic is significant
because many algorithms require them because they support
a comprehensive range. In our project and this final report,
we describe our efficient implementation of an IEEE 754 single
precision floating point processor. We also tested our design in a
Xilinx Spartan3E Nexys2 FPGA. We were tasked to implement
pipelining into the IDE environment we wrote our floating point
arithmetic in. The pipelining provides high performance and
is used to execute multiple instructions simultaneously. Our
team used top-down design approach for the three arithmetic
modules, which are addition, subtraction, and multiplication.
Synthesis and simulation results are obtained by using the
Xilinx 14.7 ISE platform.

I. INTRODUCTION

We offer a background on the importance of FPGAs, and
we also touch on the qubiquity of the IEEE-754 format.
In both industy and research, Field Programmable Gate
Arrays (FPGAs) allow the developers to build any logic
device both quickly and easily. The programmability and
flexibility of FPGAs make them ideal for prototyping, quick
time-to-market applications, one-off implementations, and
customized hardware. They are especially valuable in ap-
plications when a custom circuit is required. An example of
this application is in the NYSE trading floor where FPGAs
are used to input orders seamlessly. However, we learned
that the production volume does not always justify the costs
and time of fabricating them. Recent advances in process
technology have led to a dramatic increase in FPGA densities
and speeds, meaning the ENEE359F course should look into
more modern FPGAs. We suggest the UMD ECE department
purchase new FPGAs beause they are now becoming more
suitable for supporting designs with dense computations
and high operating frequencies. Furthermore, FPGAs are
becoming more suitable for supporting high speed floating
point processors, meaning future ENEE359F courses could
implement more advanced arithmetic.

We find it important to also note that floating point units
are widely used in digital applications such as digital signal
processing, digital image processing, and multimedia. We

*This project is part of the University of Maryland ECE curriculum in
the ENEE359F course.

1 me@erichmeissner.com
2 josiahboy96@gmail.com

discovered that in conventional floating point units, the most
frequently used floating point operations are multiplication
and addition/subtraction counting for more than 94 percent
of all floating point instructions. Hence, our ENEE359F
final project was especially applicative to real-world use.
We noticed in our project that floating-point addition is
aroguably the most complex operation in a floating-point
arithmetic. The addition consists of many variable latency
and area dependent sub-operations. Our team learned that
in floating-point addition implementations, latency is the
primary performance bottleneck. In our struggles building
a floating-point adder, we researched several papers that are
dedicated to improving the overall latency of floating-point
adders. We discovered that various algorithms and design
approaches have been developed. Overall, the floating-point
unit is one of the most important custom applications needed
in most hardware designs, as it adds accuracy, robustness
to quantization errors, and ease of use. There are many
commercial products for floating-point addition that can be
used in custom designs in FPGAs but cannot be modified for
specific design qualities like throughput, latency, and area.
We also learned of research that has also been done to design
custom floating-point adders in FPGAs. Hence, we were
tasked in the project to attempt to increase the throughput
by pipelining.

II. FLOATING POINT ADDER AND SUBTRACTOR
DESIGN

Our algorithms for addition and subtraction required more
complex operations due to the need for operator align-
ment. We studied three different floating point add and
subtract algorithms. The three include: standard, leading-
one predictor (LOP), and 2-path. It is important to note
that the implementation of these steps defines floating point
arithmetic unit latency and area. Our team stuck with the
standard method of floating point addition and subtraction.
We defined standard floating point addition to require these
five steps:

1. Exponent difference
2. Pre-shift for mantissa alignment
3. Mantissa addition/subtraction
4. Post-shift for result normalization
5. Rounding (our team was tasked to round to infinity)
The standard floating point adder we implemented is first

figure in the appendix below. The exponents of the two input
operands, ExponentA and ExponentB are fed to an exponent
comparison program. Then, in our pre-shifter, a new mantissa
is created by right shifting the mantissa corresponding to the
smaller exponent by the difference of the exponents so that



the resulting two mantissas are aligned and can be added
correctly. Our right shifting is simply dividing by a power
of 2. Then, if the mantissa adder generates a carry output,
then the resulting mantissa is shifted one bit to the right and
the exponent is increased by one. We should not that much
of our project was implemented using ”if-thrn” logic. Next,
the normalizer transforms the mantissa and exponent into a
normalized format, which our team defined for ourselves as
it was not explicitly stated what ”normalizing” required.

Our program made decisions based on the position of the
most significant one in the mantissa; therefore, the resulting
mantissa is left-shifted by an amount subsequently deducted
from the exponent. In our normalization process, if the adder
result is too large, then it shifts to right (which is simply
dividing by 2). Furthermore, if the adder result is too small,
then it shifts to right (which is simply multiplying by 2). We
noticed in our processor that precision is lost. This loss is
due to the event when some bits are shifted to right of the
right most bit or are thrown out completely. We attempted
to obtain better accuracy by shifting out bits.

A. Methodology of Standard Floating Point Add/Subtract
Algorithm

For the our adder and subtractor, we approched it with
a standard algorithm as opposed to the other methods we
researched and mentioned above. We have our exponent
comparison program that is implemented with a subtractor
and a multiplexer. The comparison program requirements are
based on the exponent bit-width. Therefore, the size of the
pre-shifter is also based on the bit-width of the matissa. The
size of our mantissa adder depends on the adder architecture
and sign mode. It is also important for the requirements of the
ripple-carry adder. The normalizer is about the same size as
the mantissa adder, and the shifter is equal in size to the pre-
shifter. The subtractor is about the same size as the exponent
comparison program. Finally, the size of the normalizer is
about the sum of the sizes of the other three components.
This section is illustrated in the first figure of the appendix.

III. ALGORITHM FOR FLOATING POINT
MULTIPLICATION

We defined floating point numbers to have the following
form:

Z= (-1S) * 2 (E - Bias) * (1.M)
As we did in our finaly presentation, we defined the

following steps to multiply two floating point numbers:
1. Multiplying the significand; for example (1.M1*1.M2)
2. Placing the decimal point in the result
3. Adding the exponents; for example (E1 + E2 Bias)
4. Obtaining the sign; for example (s1 xor s2)
5. Normalizing the result; for example (obtaining 1 at the

most significant bit of the results significand)
6. Rounding the result to fit in the available bits; our

assigned rounding scheme was to round to infinity
7. Checking for underflow or overflow occurrence
The second figure shows our data path for floating-point

multiplication, and we simplified our illustration to show

only the main parts of the data path. Our prealignment and
normalization stages require large shifters. Our prealignment
step requires a right shifter that is twice the number of
mantissa bits, for example 48 bits is required for this
single-precision floating point processor. This requirement is
because the bits shifted out have to be maintained to generate
the needed bits for rounding. Furthermore, our shifter only
needs to shift right by up to 24 places for this single-precision
processor.

Next, the normalization stage requires a left shifter equal
to the number of mantissa bits plus 1, for example there will
be 25 bits for our single-precision implementation. Also, if
the rounding of the mantissa results in an overflow, then our
mantissa will shift right by one and the exponent is then
incremented. This increment will be 24 by 24 bit for this
single-precision processor.

In our 359F project, we were taksed to employ a Radix-4
modified booth encoded Wallace multiplier. We illustrated
our multiplier in the third figure in the appendix. We based
our illustration on the designs we looked over in class
and lab. Our radix-4 recoding halves the number of partial
products. This halving reduces the number of levels required
in the Wallace tree and slightly improved our performance
by reducing area requirements.

IV. SIMULATION RESULTS

A. Adder and Subtractor

The simulations results for our adder and subtractor can
be viewed in the fourth figure of the appendix. The op-a and
op-b are the two inputs, which are both 32 bits as required
in our project, of our floating point adder and subtractor.
The ”add” variable, which is 32 bits as well, is the output
of floating point adder. In our program, overflow bit will be
high if the range exceeds the maximum value. Our program
handles the case when the range is smaller than the minimum
value by making the underflow high.

B. Multiplier

We defined fp-a and fp-b to be the the two inputs, which
are both 32 bits, of floating point multiplier. Our fp-z, which
is also 32 bits, is the output of floating point multiplier. The
results can be seen in the fifth figure of the appendix.

V. CONCLUSIONS

Our ENEE359F project is an investigation into the IEEE
Standard Floating Point Processor. We learned of the im-
portance of this format and the intricacies of implementing
the arithmetic. We have presented a single-precision float-
ing point processor with three operations implemented and
simulated. These three operations are addition, subtraction,
and addition. The floating point addition was the most
interesting to build as there were several possible methods of
implementation. We believe The future scopes of this project
are to build the ENEE359F IEEE Standard Floating Point
Processor using more advanced Field-Programmable Gate
Arrays (FPGAs).



ADDENDA

The multiplier and FPGA communications were developed
by Erich Meissner. The adder/subtractor and optimization
was performed by Josiah Boyle. Again, we believe The future
scopes of this project are to build the ENEE359F IEEE
Standard Floating Point Processor using more advanced
Field-Programmable Gate Arrays (FPGAs).

The report was written and edited entirely by Erich Meiss-
ner

APPENDIX




