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Abstract—Quantitative research has become universal at
all investment banks, hedge fund, and private equity firms.
Large financial institutions are hiring mathematical and
statistical doctorates now more than ever. The potential
returns of algorithms built off probability concepts are
extremely promising, and several hedge funds have posted
astronomical results that are too good to ignore. However,
catastrophic failures in these algorithms in financial engi-
neering, such as the story of LTCN, can occur just as often.
Due to advancements in web applications for trading and
stock analysis, we can test our theories on past performance.
We will test our ideas with the popular quantitative analysis
tool, Quantopian, to see how our engineering-probability-
course-based Python script performs against the benchmark
S&P 500 index.

Index Terms—Moving average, Bollinger Band, trade vol-
ume, market cap, S&P 500.

I. INTRODUCTION

In this project, we analyze various simple statistical
models used to trade securities in the stock market.
We back-test each of these strategies against the S&P
500, dating back to 2006. This time-frame was selected
deliberately to include the period known as The Great
Recession (Dec. 2007 — June 2009) in order to fully
analyze the robustness of each model under test. In
addition, we choose to only trade mid and large cap
stocks, or stocks with a market cap of $2 billion and
above. A stocks market capitalization, or market cap, is
defined as the number of outstanding shares, multiplied
by its current price. Mid and large cap stocks allow
us to minimize our risk, while maximizing our growth
potential.

We consider two primary trading strategies: The first
strategy involves buying and selling based on the mov-
ing average of a stocks closing price. The second strategy
involves trades made based on the relation between the
stocks closing price and its Bollinger Band. By definition,
the closing price of a stock is the price when the market
closes at 4:00PM EST. We choose to use the closing
price because it disregards any fluctuations made in after
hours trading.

II. MOVING AVERAGES

A. Relevant Theory
Lets assume we wish to find the expected value of

some discrete random variable, X. Normally, to calculate
the expected value of the discrete random variable X,
we would perform a summation of all the different

possible values of X weighted by their corresponding
probability mass function (PMF) values.

E[X] = ∑N
1 xiPx(x)

But in some situations we do not have access to the
variables PMF. However lets say we do have historical
data on different values the variable has taken on in
the past and how often these values have occurred. We
can approximate the expected value of X by taking an
average. If we have N distinct values of X and the ith

value of X, say Xi, occurred ki times, we say that the
average value of X equals:

X = x1k1+x2k2+···+xN kN
k

Where k = k1 + k2 + ...+ kN . As k grows very large (and
we look at probabilities as relative frequencies) it makes
sense that the fraction ki

k would approach Px(xi) and the
average we took of X would approach E[X] [1].

B. Stock Trading with the Moving Average

The simple moving average is a commonly used met-
ric in stock trading. In our algorithm, we calculated
the arithmetic mean of a given security by summing
the closing prices over a preselected window size and
dividing that total by the window size itself, similar to
the method discussed in the previous section. A short-
term (smaller window size) moving average crossing
above, or exceeding, a long-term (larger window size)
moving average, is typically indicative of an uptrend
in a stocks price. Conversely, when a long-term moving
average crosses above a short term-moving average is
indicative of a pullback, or downtrend in price. Short
term moving averages are better indicators of a stocks
momentum trajectory because smaller window sizes will
only capture the most recent data points. While the large
window will also capture those same data points, it will
also include values that are further from the current close
price.

Two commonly used trading strategies that use the
simple moving average are known as the golden cross
and death cross. The golden cross happens when the
50-day moving average passes through 200-day moving
average. The death cross, on the other hand, occurs when
the 200-day passes the 50-day [4]. Historically, the case
golden/death cross is compelling, however, we felt that
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using even smaller window sizes, specifically the 20 and
50-day, would give us a better opportunity at securing
smaller initial gains in order to grow our capital faster.
This is because the 20-50 and 50-20 day crosses occur
more often than the golden/death crosses.

In the event that multiple securities satisfy the buy
condition, a tie breaker will be decided upon using the
securitys trade volume. Since we are looking to confirm
an uptrend in price, we will look for high volume
from buyers [5]. By calculating the percent difference in
volume over a given window, we can fairly assign nu-
merical weights to each security and buy in accordance
with the rest of the market. This strategy also works in
reverse in the event that multiple securities satisfy the
sell condition.

III. BOLLINGER BANDS

A. Relevant Theory
The second part of our project relies on the concept of

standard deviation. The standard deviation of a random
variable is derived from the variance of that random
variable. The variance of a random variable shows
how much the value of the variable varies around its
expected value. Lets say X is a random variable. The
variance of X equals:

Var(X) = E[(X − E[X])2]

This can be viewed as our expectation of how much
X will differ from its expected value squared. For our
situation, where we do not know the explicit PMF of
our random variables, we can approximate the variance
by taking an average of (X − X)2:

∑N
1

ki(xi−X)2

k

Where Xi, ki, k, and N are as defined in the section
discussing moving averages. Once we have an approxi-
mation for the variance, we can then find the standard
deviation, S(X) =

√
(Var(X)).

The standard deviation of X can also be looked at as a
measure of how the values of X vary from the expected
value (or in this case the average), but can be easier to
understand than the variance since it has the same units
as X. For example, lets say we find X has an average of 4
and a standard deviation of 2. We would expect typical
values of X to vary between X ± S(X) = 4 ± 2, or 2 and
6 [1].

B. Stock Trading with the Bollinger Bands
The Bollinger band trading strategy can be seen as

an extension of the simple moving average pattern.
We select a window size, say 20 days, and compute
the standard deviation of closing prices of that sample.
Standard deviation, in the context of stock prices, can be
viewed as a measure of volatility within the sample. The
intuition behind trading using the Bollinger bands is in

mean reversion. Whenever market sentiment drives the
price of a stock outside two standard deviations of the
moving average, the efficiencies of the market drive the
share price back to its mean, or moving average [3][6].

It is worth noting that the price of a security is not
normally distributed and techniques such as the central
limit theorem are unreliable. This is because it is incorrect
to assume that each price is independent from the others
in the sample. In fact, each price will be very closely
related to the ones closest to it in time. Therefore, we
cannot claim that 95% of the data will be encompassed
by the bands, as you would in a normal distribution,
however studies have shown that 88% of a securitys
prices will remain within the bands [2]. Therefore, we
can still safely assume that the price will revert to the
mean.

Knowing this, we plan to buy securities that fall below
two standard deviations of the moving average, and sell
when the price jumps above two standard deviations
of the moving average. Similarly to the simple moving
average strategy, ties will be broken using trade volume.

IV. BAYESIAN ANALYSIS & SIMULATIONS

Over the course of this project, we noticed that the
back-test might fit well with past data but will fail on
unseen data. This case is similar to the one Professor
Martins warned us about. He told us a story of a
colleague of his who applied probability theorem to the
markets, and the algorithm failed horribly due to un-
predictable irregularities in stock volatility. We found it
promising to apply a Bayesian estimation and prediction
of possible future returns. The Bayesian model takes the
time series of past daily returns using an algorithm as
input. The end result is a simulation of possible future
returns.

For example, comparing the actual performance of
a trading algorithm on unseen market data with the
predictions generated by our model can inform us
whether the algorithm is behaving as expected based
on its back-test or whether it is over-fit to only work
well on past data. The Bayesian model enables this
stock market vision. Professor Nuno Martins warned us
of employing probability to the markets by telling us
the story of LTCN described above. Such probability-
based algorithms, similar to the ones that colleagues
of Professor Martins may have developed, have the
best back-test results but they may not necessarily have
the best performance in live trading. An example of
such an algorithm can be seen in the picture below. As
you can see, the live trading results of the algorithm
are completely out of our prediction area, and the
algorithm is performing worse than our predictions.
These predictions are generated by fitting a linear line
through the cumulative back-test returns. We then
assume that this linear trend continuous going forward.
As we have more uncertainty about events further in
the future, the linear cone is widening assuming returns
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are normally distributed with a variance estimated from
the back-test data. This is certainly not the best way
to generate predictions as it has a couple of strong
assumptions like normality of returns and that we can
confidently estimate the variance accurately based on
limited back-test data. Below we show that we can
improve these cone-shaped predictions using Bayesian
models to predict the future returns[7].

The overall output of the Bayesian model, back tested
during the stock market crash of 2007 - 2009, is outlined
below:

Our team also found it interesting to back-test against
later data after the markets had rebounded. We found
this Bayesian model, which manipulated Bollinger band
and moving average data, to perform no better than
the benchmark S&P 500. However, we set out to lower
losses and exposure during the housing crisis and
resulting crash. At the end of the day, the best decision
would have been to limit exposure completely and pull
all assets out of the markets. The results outside of the
time period of the market crash are posted below from
2013 to 2017:

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

In conclusion, we found that there is no ’silver bullet’
trading strategy for making a killing in the stock market.
That being said, prudent strategies such as diversifying
your portfolio or investing in ETFs along with monitor-
ing basic indicators including, but not limited to, various
moving averages and the Bollinger bands will play well
and generate comparable returns to the market.
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